skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Udemgba, Chinwe S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cellulose nanocrystal (CNC)-reinforced composites are gaining commercial attention on account of their high strength and sustainable sourcing. Grafting polymers to the CNCs in these composites has the potential to improve their properties, but current solution-based synthesis methods limit their production at scale. Utilizing dynamic hindered urea chemistry, a new method for the melt-functionalization of cellulose nanocrystals has been developed. This method does not require toxic solvents during the grafting step and can achieve grafting densities competitive with state-of-the-art solution-based grafting methods. Using cotton-sourced, TEMPO-oxidized CNCs, multiple molecular weights of poly(ethylene glycol) (PEG) as well as dodecane, polycaprolactone, and poly(butyl acrylate) were grafted to the CNC surface. With PEG-grafted nanoparticles, grafting densities of 0.47 chains nm−2 and 0.10 chains nm−2 were achieved with 2000 and 10,000 g mol−1 polymer chains respectively, both of which represent significant improvements over previous reports for solution-based PEG grafting onto CNCs. 
    more » « less
  2. Abstract Here, we demonstrate the applicability of self‐assembling linear‐dendritic block copolymers (LDBCs) and their nanoaggregates possessing varied surfaces as therapeutic nanocarriers. These LDBCs are comprised of a hydrophobic, linear polyester chemically coupled to a hydrophilic dendron polyamidoamine (PAMAM)—the latter of which acts as the surface of the self‐assembled nanoaggregate in aqueous media. To better understand how surface charge density affects the overall operability of these nanomaterials, we modified the nanoaggregate surface to yield cationic (NH3+), neutral (OH), and anionic (COO) surfaces. The effect of these modifications on the physicochemical properties (i.e., size, morphology, and surface charge density), colloidal stability, and cellular uptake mechanism of the polymeric nanocarrier were investigated. This comparative study demonstrates the viability of nanoaggregates formed from PDLLA‐PAMAM LDBCs to serve as nanocarriers for applications in drug delivery. 
    more » « less